Decomposing Multifractal Crossovers

نویسندگان

  • Zoltan Nagy
  • Peter Mukli
  • Peter Herman
  • Andras Eke
چکیده

Physiological processes-such as, the brain's resting-state electrical activity or hemodynamic fluctuations-exhibit scale-free temporal structuring. However, impacts common in biological systems such as, noise, multiple signal generators, or filtering by transport function, result in multimodal scaling that cannot be reliably assessed by standard analytical tools that assume unimodal scaling. Here, we present two methods to identify breakpoints or crossovers in multimodal multifractal scaling functions. These methods incorporate the robust iterative fitting approach of the focus-based multifractal formalism (FMF). The first approach (moment-wise scaling range adaptivity) allows for a breakpoint-based adaptive treatment that analyzes segregated scale-invariant ranges. The second method (scaling function decomposition method, SFD) is a crossover-based design aimed at decomposing signal constituents from multimodal scaling functions resulting from signal addition or co-sampling, such as, contamination by uncorrelated fractals. We demonstrated that these methods could handle multimodal, mono- or multifractal, and exact or empirical signals alike. Their precision was numerically characterized on ideal signals, and a robust performance was demonstrated on exemplary empirical signals capturing resting-state brain dynamics by near infrared spectroscopy (NIRS), electroencephalography (EEG), and blood oxygen level-dependent functional magnetic resonance imaging (fMRI-BOLD). The NIRS and fMRI-BOLD low-frequency fluctuations were dominated by a multifractal component over an underlying biologically relevant random noise, thus forming a bimodal signal. The crossover between the EEG signal components was found at the boundary between the δ and θ bands, suggesting an independent generator for the multifractal δ rhythm. The robust implementation of the SFD method should be regarded as essential in the seamless processing of large volumes of bimodal fMRI-BOLD imaging data for the topology of multifractal metrics free of the masking effect of the underlying random noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Trends on Detrended Fluctuation Analysis of Precipitation Series

We use detrended fluctuation analysis DFA method to detect the long-range correlation and scaling properties of daily precipitation series of Beijing from 1973 to 2004 before and after adding diverse trends to the original series. The correlation and scaling properties of the original series are difficult to analyze due to existing crossovers. The effects of the coefficient and the power of the...

متن کامل

Multiscale multifractal detrended-fluctuation analysis of two-dimensional surfaces.

Two-dimensional (2D) multifractal detrended fluctuation analysis (MF-DFA) has been used to study monofractality and multifractality on 2D surfaces, but when it is used to calculate the generalized Hurst exponent in a fixed time scale, the presence of crossovers can bias the outcome. To solve this problem, multiscale multifractal analysis (MMA) was recent employed in a one-dimensional case. MMA ...

متن کامل

Fractal and Multifractal Time Series

5 Methods for Non-Stationary Fractal Time-Series Analysis 15 5.1 Wavelet Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 Discrete Wavelet Transform (WT) Approach . . . . . . . . . . 16 5.3 Detrended Fluctuation Analysis (DFA) . . . . . . . . . . . . . 16 5.4 Detection of Trends and Crossovers with DFA . . . . . . . . . 19 5.5 Sign and Magnitude (Volatility) DFA . . . . . . . ....

متن کامل

The Lyapunov Spectrum for Conformal Expanding Maps and Axiom-A Surface Diffeomorphisms

Lyapunov exponents measure the exponential rate of divergence of infinitesimally close orbits of a smooth dynamical system. These exponents are intimately related to the global stochastic behavior of the system and are fundamental invariants of a smooth dynamical system. In [EP], Eckmann and Procaccia suggested an analysis of Lyapunov exponents for chaotic dynamical systems. This suggestion was...

متن کامل

Time-dependent scaling patterns in high frequency financial data

We measure the influence of different time-scales on the intraday dynamics of financial markets. This is obtained by decomposing financial time series into simple oscillations associated with distinct time-scales. We propose two new time-varying measures of complexity: 1) an amplitude scaling exponent and 2) an entropy-like measure. We apply these measures to intraday, 30-second sampled prices ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017